Sustainable Technology and Business Development Strategy TOYO's value-added approach toward the realization of a carbon-neutral society

December 12, 2022 Toyo Engineering Corporation Carbon Neutral Business Division, Next-Generation Technology & Application Division

Introduction (1/3): Positioning of the Sustainable Technology and Business Development Strategy

Creating new revenue sources in the domain of carbon neutrality through cocreation from the concept stage of business development

Source: Toyo Medium-Term Management Plan 2021-2025

TOYO

Introduction (2/3): Mission of T-Next¹ and the CN Business Division²

Understand and implement technologies and businesses beyond the framework of existing organizations

1. Next-Generation Technology & Application Division 2. Carbon Neutral Business Division

TOYO

Introduction (3/3): TOYO's Activities for a Carbon Neutral Society

Clean NH_/H Blue/Green NH₃ **B**NH₃ Cracking C Artificial Photosynthesis SAF Gasification/FT Alcohol to Jet Power to Liquid **Bioethanol** CCUS CO₂-EOR/CCS **0** g-Methanol® 🕖 e-Fu<u>el</u> (Methanation **Renewable Energy** Solar Power **M** Biomass Power **Energy Saving/Recycling N**SUPERHIDIC®/HERO Feedstock/Recycled PET **P**Redox Flow Battery

1. Status of development of fuel ammonia and hydrogen businesses

A) Market outlook

- B) TOYO's Characteristics and approaches to business development
- C) Progress in the production of fuel ammonia
- D) Progress in the domestic ammonia receiving terminal and cracking (hydrogen) business
- E) Efforts to create demand (e.g., Green Innovation Fund, naphtha cracker upgrade)
- 2. Status of development for turning post-consumer plastics into recycled feedstock for petrochemicals

Investment highlights

A) Ultra-long-term growth market

Coal-fired power generation, marine shipping and hydrogen carriers (gas-fired power generation/FCV, etc.) will be approx. 1 billion tons/year in 2070

B) Overwhelming track record

Constructed more than 86 ammonia plants and 48 ammonia tanks

C) Entering the fuel value chain business

Pursuing EPC, income and capital gains through joint capital investment (reinforcement of profit structure)

D) Development of domestic receiving infrastructure

First develop commercial ammonia distribution and infrastructure, then expand to hydrogen applications (long-term use)

E) Creation of new demand

Conduct demonstration of the fuel conversion of naphtha crackers by 2030. Potential demand in Asia: 100 million tons/year

1. Status of development of fuel ammonia and hydrogen businesses

A) Market outlook

- B) TOYO's Characteristics and approaches to business development
- C) Progress in the production of fuel ammonia
- D) Progress in the domestic ammonia receiving terminal and cracking (hydrogen) business
- E) Efforts to create demand (e.g., Green Innovation Fund, naphtha cracker upgrade)
- 2. Status of development for turning post-consumer plastics into recycled feedstock for petrochemicals

Coal-Fired Power Generation Outlook (Global)

Demand for NH_3 fuels is expected to increase globally, not just in Japan.

 $*H_2/NH_3 = 100\%$ full conversion only, not including co-firing with natural gas or coal

Shipping Fuel Outlook NH₃ fuel is the mainstream for decarbonizing ships

Comparison of Hydrogen Carriers

NH₃ dominates in terms of hydrogen density, maturity of transport and storage technology, and cost

	NH ₃		H ₂ Carrier	
	(Direct Use)	NH ₃	Liquefied H ₂	МСН
Heating Value	GOOD	EXCELLENT	EXCELLENT	EXCELLENT
	9.41 MJ/Nm ³	10.88 MJ/Nm ³	10.88 MJ/Nm ³	10.88 MJ/Nm ³
Condition in Transportation	PROVEN -33 °C	PROVEN -33 °C	UNDER DEVELOPMENT -253 °C	PROVEN Normal Temp.
Efficiency in	HIGH	HIGH	MIDDLE LOW 70.6 kg H ₂ /m ³ 47.3 kg H ₂ /r	
Transportation	121 kg H ₂ /m ³	121 kg H ₂ /m ³		
Cost to Japan ¹	ost to Japan ¹ LOWEST LOW		HIGH	MIDDLE
	Approx. 5.5 USD/kg H ₂ A		Approx. 7 USD/kg H ₂	Approx. 6 USD/kg H ₂

1. Cost of delivering hydrogen or ammonia produced via electrolysis from Australia to an industrial customer in Japan in 2030, IEA's The Future of Hydrogen

Long-term Fuel NH_3 Demand Outlook NH_3 demand will expand to about 1 billion tons by 2070

Source: TOYO Analysis based on IEA reports

1. Status of development of fuel ammonia and hydrogen businesses

A) Market outlook

- B) TOYO's Characteristics and approaches to business development
- C) Progress in the production of fuel ammonia
- D) Progress in the domestic ammonia receiving terminal and cracking (hydrogen) business
- E) Efforts to create demand (e.g., Green Innovation Fund, naphtha cracker upgrade)
- 2. Status of development for turning post-consumer plastics into recycled feedstock for petrochemicals

Features of TOYO

Business partner that contributes to the social implementation of clean fuel NH3

Mission: Engineering for Sustainable Growth of the Global Community

BLUE NH₃ Cost Reduction Approach Developed 3D model & BOQ for 3,000 MTPD modularization

Evaluated the design of 6,000 MTPD NH_3 plant, and become ready for FEED

Structure (Example)

TOYO will co-invest in a receiving terminal as owner's Eng'g

1. Status of development of fuel ammonia and hydrogen businesses

A) Market outlook

B) TOYO's Characteristics and approaches to business development

C) Progress in the production of fuel ammonia

- D) Progress in the domestic ammonia receiving terminal and cracking (hydrogen) business
- E) Efforts to create demand (e.g., Green Innovation Fund, naphtha cracker upgrade)
- 2. Status of development for turning post-consumer plastics into recycled feedstock for petrochemicals

TOYO's Ongoing H₂/NH₃ Projects Developing 30+ projects with various partners worldwide

TOYO, PIHC and PIM have signed a collaboration agreement regarding a feasibility study for Green NH_3 production in Indonesia

World-class agrochemical and food conglomerate

Now, transforming into a sustainable energy company

Unique Points of the Project

Increase the value of PIHC's existing assets for the achievement of carbon neutrality

Utilize PIHC's existing facilities

- **QUICK** \rightarrow Add electrolyzer to NH₃ plants
 - \rightarrow Get RE electricity from the grid

ECONOMICMinimize CAPEX and OPEX \rightarrow Utilize unused NH3 capacity \rightarrow Level out annual NH3 production

Swap green value with other plants

- **LARGE** \rightarrow Earn RE & Green NH₃ Certification
 - \rightarrow Virtually aggregate green NH₃

Alaska Blue NH₃ business MOU signed with Alaska Gas Development Corporation, Hilcorp and Mitsubishi Corporation

LEADING ENERGY ORGANIZATIONS TO COLLABORATE ON COOK INLET AMMONIA PRODUCTION AND CARBON SEQUESTRATION ASSESSMENT

ANCHORAGE, AK (Oct. 4) – Today, the Alaska Gasline Development Corporation (AGDC) announced an agreement between leading energy organizations to assess the potential to produce zero-carbon ammonia in the Cook Inlet region of Southcentral Alaska.

The parties – AGDC, Mitsubishi Corporation, TOYO Engineering Corporation and Hilcorp Alaska – have signed a memorandum of understanding to evaluate the commercial feasibility of utilizing North Slope natural gas delivered to Southcentral Alaska via the Alaska LNG Project to produce carbon-free ammonia. The carbon dioxide generated from this process is able to be captured and sequestered in secure underground geologic formations, and Alaska's Cook Inlet basin has been identified by scientists as having world-class carbon sequestration potential. This assessment project will further define Cook Inlet's sequestration potential and the economics for producing clean ammonia alongside LNG in Alaska.

Ammonia emits no carbon dioxide when burned to produce energy, is rich in hydrogen, and is easier to transport than hydrogen. Ammonia is central to the zero-carbon energy strategies of nations across the Pacific Rim, including goals by Japan and Korea to become carbon neutral by 2050. Japan plans to grow ammonia use in energy production to three million tons per year by 2030, up from zero today.

In addition to Cook Inlet's carbon sequestration capabilities, the parties factored other unique Alaska advantages into the decision to initiate the ammonia assessment. Round-trip tanker transport from Alaska to key Asian markets is more than 12,000 miles shorter than from the U.S. Gulf Coast, reducing costs and shipping emissions. Alaska delivered a 45-year record of success exporting LNG to Asia.

1. Status of development of fuel ammonia and hydrogen businesses

A) Market outlook

- B) TOYO's Characteristics and approaches to business development
- C) Progress in the production of fuel ammonia
- D) Progress in the domestic ammonia receiving terminal and cracking (hydrogen) business
- E) Efforts to create demand (e.g., Green Innovation Fund, naphtha cracker upgrade)
- 2. Status of development for turning post-consumer plastics into recycled feedstock for petrochemicals

Domestic NH_3 Receiving Terminal (1/2): Infrastructure Development Steps First, develop commercial distribution/infrastructure for NH_3 and then expand to H_2 applications

Domestic NH_3 Receiving Terminal (2/2): Contents of the Feasibility Study Optimize OPEX and CAPEX based on needs/constraints/related technologies/laws

Activities of the Clean Fuel Ammonia Association (CFAA)

As a member of the CFAA's Board of Directors, we will contribute to the implementation of ammonia in society

Toward the Formation of Public Acceptance

A careful explanation of the definition, validity and response to risks is required

1. Status of development of fuel ammonia and hydrogen businesses

A) Market outlook

- B) TOYO's Characteristics and approaches to business development
- C) Progress in the production of fuel ammonia
- D) Progress in the domestic ammonia receiving terminal and cracking (hydrogen) business
- E) Efforts to create demand (e.g., Green Innovation Fund, naphtha cracker upgrade)
- 2. Status of development for turning post-consumer plastics into recycled feedstock for petrochemicals

Selection of Naphtha Decomposition Furnaces in Japan as a Target Related xield to the Energy Consumption of the Petrochemical Industry

Segment analysis

Conversion to ammonia fuel is easy, and <u>Naphtha crackers</u> <u>in Japan</u> are selected as a target because there is significant latent demand is large

- It is assumed that electrification will proceed in areas where the price of renewable energy is low.
- On the other hand, Japan assumes that ammonia fuels will dominate in electrification because of the high cost of renewable energy and geographical constraints.

Likelihood of ammonia fuel conversion by heat source and region in the petrochemical industry

		Europe	Middle East Africa	North America South America	Asia	Japan
Large	Naphtha cracker	electrificatio N	electrification	electrification	NH ₃	NH ₃
Scale of the	Purification system	electrification	electrification	electrification	NH ₃	NH3
heat source	Reaction system	electrification	electrification	electrification	NH ₃	NH3
	Compression system	electrification	electrification	electrification	NH ₃	NH3
↓ Small	Transport system	electrificati	electrification	electrification	NH ₃	NH ₃

Target overview

The potential demand for ammonia as a fuel for naphtha crackers in Japan is about 8 million tons per year.

- Fuel ammonia required per ton of ethylene plant production capacity: 1.34 tons (on a 100% fired basis) (1)
- Production capacity of ethylene plants: 6.16 million tons (based on consideration of fixed repairs) (2)
- Annual demand for fuel ammonia: 1 x 2 = 8.25 million tons

Note: Assuming all naphtha crackers are converted to ammonia fuel by 2050

TOYO's target market share: over 50% as the Leader in 2050

Reference: Production capacity of ethylene plants in Japan (based on consideration of fixed repairs)*50-sound order

Source: Petrochemical Industry Association

		 _
Idemitsu Kosan	99.7	•
ENEOS	40.4	I
Osaka Petrochemical	45.5	1
Keiyo Ethylene	69.0	1
Showa Denko	61.8	1
Tosoh	49.3	4
		•

_		
	Tonen Chemical	49.1
	Maruzen Petrochemical	48.0
	Mitsui Chemicals	55.3
	Mitsubishi Chemical	48.5
	Mitsubishi Chemical Asahi Kasei Ethylene	49.6
	Total	616.2

Reference: Potential demand in Asia is about 100 million tons per year.

(ethylene plant production capacity of approximately 76 million tons in 2022 * 1.34 tons)

Source: METI, Future Global Petrochemical Product Supply and Demand Trends (General Summary)

Use

圓師制

Burner renovation

remodeling of

crackers

ENGINEERING

New construction and

Reward

Creating/Expanding Businesses with Integrated Value Chains from Production of Fuel Ammonia until Naphtha Crackers

Value provided to society and customers

Construct the entire value chain

Relationship between business model overview and R&D plan

Re-published: Investment Highlights

A) Ultra-long-term growth market

Coal-fired power generation, marine shipping and hydrogen carriers (gas-fired power generation/FCV, etc.) will be approx. 1 billion tons/year in 2070

B) Overwhelming track record

Constructed more than 86 ammonia plants and 48 ammonia tanks

C) Entering the fuel value chain business

Pursuing EPC, income and capital gains through joint capital investment (reinforcement of profit structure)

D) Development of domestic receiving infrastructure

First develop commercial ammonia distribution and infrastructure, then expand to hydrogen applications (long-term use)

E) Creation of new demand

Conduct demonstration of the fuel conversion of naphtha crackers by 2030. Potential demand in Asia: 100 million tons/year

- 1. Status of development of fuel ammonia and hydrogen businesses
 - A) Market outlook
 - B) TOYO's Characteristics and approaches to business development
 - C) Progress in the production of fuel ammonia
 - D) Progress in the domestic ammonia receiving terminal and cracking (hydrogen) business
 - E) Efforts to create demand (e.g., Green Innovation Fund, naphtha cracker upgrade)
- 2. Status of development for turning post-consumer plastics into recycled feedstock for petrochemicals

Mass Balancing of Plastics in Japan

1. Material recycling and chemical recycling

Joint Collaboration for Process Improvement for Turning Post-Consumer Plastics into Recycled Feedstock for Petrochemicals in Thailand (press release in January 2022)

Photo: Demonstration plant for the advanced recycling process

- SCG Chemicals, Thailand, in a petrochemical plant
- Amount processed: 4,000 t/year (on a product basis)
- Completed in January 2021 and commenced operation

- Technical expertise and experience gained through the engineering and construction of petrochemical plants
- System construction of upstream and downstream processes and total optimization
- Improving the performance of existing demonstration plants
- ✓ Scale up to a commercial plant
- By optimizing for ethylene and polymer plants, increase production capacity for plastics derived from waste plastics

Expansion to other SCG Chemicals plants and external sales

Toyo Engineering Corporation URL https://www.toyo-eng.com

If you have any questions about this document, please contact: Yoshifumi SHIRAISHI

General Manager

Corporate Communications Department

2-8-1 Akanehama, Narashino, Chiba, Japan 275-0024

TEL +81-47-454-1681

E-mail ir@toyo-eng.com

The forecasts in this document are based on information available at the time of compilation and are inherently subject to a variety of risks and uncertainties. Actual-results may vary significantly from forecasts due to factors including, but not limited to, changes in the economic or business environment and exchange rate fluctuations.